Sustainability Assessment methodology for highly automated industrial manufacturing systems

Jan-Markus Rödger
Division for Quantitative Sustainability Assessment (QSA)

Introduction:
- Trends in Manufacturing:
 - 30 million people are employed in the manufacturing sector in the EU
 - Automation & Sustainability are key\(^{(a)}\) to maintain competitive
 - Burden shifting from use stage (e.g. e-Mobility)
 - New ISO 14001/2015: Life cycle perspective in production
- Automotive Manufacturing:
 - Car Body production is highly automated (up to 1,200 robots ≈ 95%)

\(^{(a)}\) Roadmap for Factories of the Future in 2030 developed by European Commission & European Factories of the Future Research Association (EFFRA)

Challenge:
\[I = P \times A \times T \] \(^{(b)}\)
- Environmental Impact (I) of car sector rises due to population (P) and affluence (A= \(\uparrow \) prosperity \(\uparrow \) mobility) increase \(\rightarrow \) Technology (T) the only lever to decrease impacts
- Increase in car variants, production life-time, infrastructure costs and complexity
- Decrease of time for planning & ramp-up
- Economic data main industry interest
- Life cycle thinking hardly exists in production

Objectives:
Sustainable Manufacturing:
- Assess Sustainability in relation to the final product incl. rebound effects & planetary boundaries
Sustainability in Highly Automated Manufacturing:
- Sustainability Assessment Algorithm for production planning targets to be applied in an economically feasible way
- Identification of when, how and where to implement

Contact:
Jan-Markus Rödger
Produktionstorvet, building 424, room 223
DK-2800 Kgs. Lyngby
januw@dtu.dk
www.man.dtu.dk

Supervisor/co-supervisor:
Niki Bey / Michael Z. Hauschild

Funded by:
The research leading to these results has received funding from the European Community’s Seventh Framework Program under grant agreement No. 609391 (AREUS).

Start and completion date:
December 2013 – December 2016